
 

 

 

 

 

 

 

 

AZ Multi-inheritance 
version 1.1 

 

 

 

Andrei Zagorodni 

2023-04-07 

 



 2 

Content 

 

1 Introduction .................................................................................................................... 4 

1.1 Conventions ............................................................................................................. 4 

1.1.1 Lexicon, shortenings, and abbreviators ............................................................. 4 

1.1.2 Font conventions............................................................................................... 5 

1.2 Versions................................................................................................................... 5 

1.2.1 Version 0.0.0-pre-alpha..................................................................................... 5 

1.2.2 Version 1.0.0-alpha ........................................................................................... 6 

1.2.3 Version 1.1.0-beta ............................................................................................. 6 

2 AZ Multi-inheritance Background Ideas ......................................................................... 7 

2.1 Solutions .................................................................................................................. 7 

2.2 Features ................................................................................................................... 7 

2.3 Limitations .............................................................................................................. 7 

3 System Requirements and Installation ............................................................................ 8 

3.1 Requirements ........................................................................................................... 8 

3.2 Installation ............................................................................................................... 8 

3.2.1 File location ...................................................................................................... 8 

3.2.2 Recompiling ..................................................................................................... 9 

4 Primary Functions of AZ Multi-inheritance toolkit ....................................................... 10 

4.1 Creating i-Class ..................................................................................................... 10 

4.1.1 Creating new i-Class ....................................................................................... 10 

4.1.2 Converting Interface to i-Class ........................................................................ 11 

4.1.3 Creating i-Class withing LVLIB ..................................................................... 11 

4.2 Setting i-Class as parent class................................................................................. 12 

4.2.1 Selecting parent .............................................................................................. 12 

4.3 Creating new method ............................................................................................. 14 

4.4 Consistency control ................................................................................................ 15 

4.4.1 Using consistency tool .................................................................................... 15 

4.4.2 Investigation results GUI ................................................................................ 15 

5 Using i-Classes ............................................................................................................. 18 

5.1 Specificity of i-Class code...................................................................................... 18 

5.1.1 Order of parent constructors and destructors ................................................... 18 



 3 

5.1.2 Order of parent constructors and destructors ................................................... 18 

5.1.3 Repeated calls of constructor and destructor.................................................... 18 

6 About and Contacts ...................................................................................................... 20 

6.1 License Agreement ................................................................................................ 20 

6.2 Contacts ................................................................................................................. 21 

6.3 Support and communications ................................................................................. 22 

 



 4 

 

1 Introduction 

 

AZ Multi-inheritance (AZM) is solution and toolkit for implementing multiple inheritance 

in LabVIEW OOP projects. 

The answer is based on native LabVIEW interfaces; thus, applicable to versions starting from 

LabVIEW 2020. 

 

Attention! 

Multiple inheritance is extremely powerful OOP technique. As any powerful programming 

technique, it opens possibility to create excellent architectural solutions as well as errors that 

are difficult to identify. Thus using described tools (AZM) and approaches is recommended 

only to advanced users with significant OOP experience. 

 

1.1 Conventions 

1.1.1 Lexicon, shortenings, and abbreviators 

 

Abbreviator Description 

Ancestor Any class from which considered class inherits. The word is convenient to define indirect 

inheritance; i.e. parents of parents. 

AZM AZ  Multi-inheritance 

[name of XYZ] User-selected name 

BD Block Diagram 

enum enumerated data type 

G# Alternative toolkit providing LabVIEW with by-reference OOP programming features. 

GOOP Concept and toolkit providing LabVIEW with by-reference OOP programming features. 

i-Class Interface-based class specific for AZM 

Interface The word is used in this document solely for LabVIEW OOP Interfaces. 

[LabVIEW] Location of LabVIEW in this computer; for example 

C:\Program Files (x86)\National Instruments\LabVIEW 2020\ 

LVLIB LabVIEW Project Library 

OOP Object-Oriented Programming 

Parent Any class from which considered class inherits. The word is convenient to define direct 

inheritance; i.e. closest parents of the class. 

RTE Run-Time Engine 



 5 

Abbreviator Description 

SW Software; AZM software 

 

 

 

1.1.2 Font conventions 

 

 Bold is used for anything that appears literally in a LabVIEW environment or in 

LabVIEW  program. For example, for menu, labels that cannot be altered. 

 Italic is used for terms and messages. 

 Constant Width is used for values: paths, names, etc. 

 Constant Width Bold is used for values: paths, names, etc. that cannot or must 

not be altered. 

 [ ] – brackets surround selectable parts of paths, names, etc. 

 Green Italic is used for my personal notes. 

 

1.2 Versions 

 

Version number consists of four values: 

1. version - altered with major changes causing compatibility and/or conceptual issues; 

2. subversion – altered with introduction of major changes; 

3. fix – minor changes, f. ex. a bug fix or minor performance improvement; 

4. build – has meaning only for developer; f. ex. allows accounting of development 

packages, special assemblies, etc. 

Altered version or subversion can cause a need in reading updated manual, while altered fix or 

build does not affect the way of use. 

 

1.2.1 Version 0.0.0-pre-alpha 

 

First functional version of the toolkit. The version is prepared in connection to presentation at 

GDevCon #3, Amsterdam, 9th Sept 2022. 

 

Attention! This version is proof of concept. It could undergo dramatic changes after 

obtaining feedbacks. I highly appreciate any feedback /Andrei Zagorodni 



 6 

 

1.2.2 Version 1.0.0-alpha 

 

First release of the toolkit. 

 

1.2.3 Version 1.1.0-beta 

 

New features: 

 New i-Class… menu is added. The menu works with all three relevant project 

members: i-Classes, Interfaces, and GOOP4 classes. See TBD. 

 Add Method… menu is added. The menu works with all three relevant project 

members: i-Classes, Interfaces, and GOOP4 classes. See TBD. 

Improvements: 

 Conversion of Interface to i-Class (see TBD) automatically inserts parent constructors 

and destructors in newly created constructor and destructor. 

 

 



 7 

 

2 AZ Multi-inheritance Background Ideas 

2.1 Solutions 

 

AZ Multi-inheritance (AZM) is based on following: 

 Type-defined attribute cluster is stored as DVR (similarly to GOOP4). 

 The DVR-s are mapped to object instances. 

 The map key has LabVIEW Interface datatype. 

 Only GOOP4 objects are cast to the i-Class type (i-Classes are assembled by AZM). 

 The map is stored in FGV. 

 

2.2 Features 

 

 AZM provides GOOP4 classes with multiple parent classes called i-Classes. 

 Conventional GOOP4 ancestor class and ancestor i-Classes are two types of 

parentship. 

 GOOP4, i-Classes, and Interfaces implemented as parents simultaneously do not 

create any conflict. 

 LabVIEW code created with toolkit can be opened, edited, and run without installation 

of the toolkit. The code is not limited to LabVIEW development environment; 

corresponding EXE-files can be run under conventional LabVIEW RTE. 

 

2.3 Limitations 

 

 Current version is tested only for My Computer branch of LabVIEW Project. Use of 

the toolkit with other targets is implemented but not verified yet. 

 AZM is applicable only to GOOP4 classes. It can probably be used with GOOP3 and 

G# classes but such feature has not been tested and not implemented yet. 

 AZM cannot be used with native LabVIEW classes. 

 Classes assembled by AZM (i-Classes) are abstract and cannot be instantiated. 

 i-Classes and conventional GOOP4 classes cannot be converted to each other. 



 8 

 

3 System Requirements and Installation 

3.1 Requirements 

 

 The current version of AZM is developed for LabVIEW 2020 and expected to be fully 

functional with following LabVIEW versions. 

 No additional package is required. 

 AZM concept and toolkit cannot be downgraded to earlier LabVIEW versions. 

 The current version of AZM works with GOOP4 classes. Thus, this document is 

targeted to developers familiar with GOOP4. 

 Installation of GOOP development suite is not required. However, I will be very 

surprised if one uses AZM toolkit without GOOP toolkit /Andrei Zagorodni 

 

3.2 Installation 

 

No installer is supplied with the current version of the toolkit. Files must be manually copied 

in corresponding LabVIEW directories. 

Files belonging to older versions of AZM must be deleted before installation. 

3.2.1 File location 

 

Files must be copied into different directories of LabVIEW. The table below refers to 

[LabVIEW] directory, for example to, 

C:\Program Files (x86)\National Instruments\LabVIEW 2020\ 

 

Content of the following source directories must be copied into corresponding target 

directories. 

 

Supplied files Target LabVIEW directory 

GProviders [LabVIEW]\resource\Framework\Providers\GProviders\ 

Providers [LabVIEW]\resource\Framework\Providers\ 

Project [LabVIEW]\resource\Framework\project\ 

help [LabVIEW]\help\ 

 



 9 

3.2.2 Recompiling 

 

In some cases, files of the toolkit must be recompiled after the copying; f. ex. VIs must be re-

saved accounting to new locations of sub-VIs. 

To do it open consequently three VIs. These VIs are used only for manual installation. Ignore 

messages concerning altered file locations. Order of opening could be important: 

 

1. Open LabVIEW. 

2. Open  
[LabVIEW]\help\ AZ-MultiInheritance\ 

_1_all_help_AZ-MultiInheritance.vi 

3. Open 
[LabVIEW]\resource\Framework\Providers\ 

AZ-MultiInheritance\ 

_2_all_providers_AZ-MultiInheritance.vi 

4. Open 
[LabVIEW]\project\ AZ-MultiInheritance\ 

_3_all_project_AZ-MultiInheritance.vi 

5. Click menu File > Save All. 

6. Close all VI-s. 

7. Restart LabVIEW. 



 10 

 

4 Primary Functions of AZ Multi-inheritance toolkit 

 

Note: When working with AZM all involved files must be available for modifications. 

Remove write-protection from involved i-Classes, GOOP4 classes, and all their members. 

 

4.1 Creating i-Class 

4.1.1 Creating new i-Class 

 

1. Right-click My Computer or Virtual Folder and select menu AZ-MultiIinheritance  

>  New i-Class…  

2. New i-Class GUI will be opened. 

 

 

Figure 1 GUI for creating new i-Class 



 11 

 

3. Fill the form and click Create class. 

 

Notes: 

 If a class with selected name already exists in the project, font of the field Class Name 

turns red. 

 List Parents contain both i-Classes and Interfaces. The first column represents 

qualified names. 

 

4.1.2 Converting Interface to i-Class 

 

1. Select Interface existing in the project. 

2. Right-click the Interface and select menu AZ-MultiInheritance  > Convert to class. 

 

The Interface will be supplied with two virtual folders and five new members: 

 utils/[Interface name]_Attributes.vi – utility method; holding object 

attributes in uninitialized shift register (private). 

 utils/[Interface name]_GetAttributes.vi – attribute accessor with 

functionality similar to corresponding member of GOOP4 class (protected). 

 protected/ObjectAttributes.ctl – cluster defining object attributes in a 

way similar to GOOP4 (protected). 

 protected/[Interface name]_Create.vi –  object constructor similar to 

GOOP4 (protected). 

 protected/[Interface name]_Destroy.vi –  non-dynamic-dispatch 

object destructor (protected). 

 

Attention! 

Conversion of an Interface to i-Class does not affect classes that already inherit from this 

Interface. Corresponding changes must be implemented in the code using Consistency tool 

(see section 4.4) or manually. 

 

4.1.3 Creating i-Class withing LVLIB 

 

The current version of the toolkit does not allow one-step creating i-Classes as members of 

LVLIB-s. Use one of two methods instead: 



 12 

 Create new i-Class outside the LVLIB (see 4.1.1). The class should be located in the 

desirable directory of the HD but its location in the project does not matter. Then 

conventionally move the i-Class in the LVLIB. 

 Create Interface within the LVLIB then convert the Interface to i-Class (see 4.1.2). 

4.2 Setting i-Class as parent class 

 

1. Right-click GOOP4 class, i-Class, or Interface and select menu AZ-

MultiInheritance > Set parent. 

2. Parent-selection GUI is opened. The GUI is described in section 4.2.1. 

3. Select parent and click Set parent. 

 

 Inheritance from selected i-Class or Interface will be set. 

 [i-Class name]_Attributes.vi with corresponding enum options will be 

added to code of constructor and destructor BD-s. 

 

Attention! 

If the project contains i-Classes, this tool is highly recommended for creating parent-child 

relations even between Interfaces. It preserves calls to constructors and destructors of 

i-Classes if they are found somewhere up in the hierarchy. 

 

4.2.1 Selecting parent 

 

Parent selection GUI is shown in Figure 2. 

 



 13 

 

 

Figure 2 Example of newly created AZI method 

 

 Column i-Classes & Interfaces shows all Interfaces in the project: both “as is” and 

converted to i-Classes. 

 Column Type indicates this difference. 

 Parent in Column Ancestorship shows if selected class already inherits from the 

i-Class/Interface. Ancestor in this column indicates that the inheritance is already 

exists but via one or more members in class hierarchy. 

Difference between Parent and Ancestor is illustrated by Figure 3. 

 

 

Figure 3 Example of newly created AZI method 

 

Note: 

If column Ancestorship contains word Ancestor, implementation of direct inheritance 

(changing ancestor to parent) is not forbidden. However, this does not add any functionality to 

the class while adding accessors to its constructor and destructor. 



 14 

 

4.3 Creating new method 

 

1. Right-click GOOP4 class, i-Class, or Interface and select menu AZ-

MultiInheritance > Add Method…  

2. Corresponding GUI will be opened 

 

 

Figure 4 GUI for creating new method 

The fields are: 

 Indicator Assembled name shows the method name. The font turns red if the method 

already exists in the class. 

 Control Raw name is used to input editable part of the name. 

 Checkbox Class as prefix can be selected to prepend method name with class name. 

 Selectors Accessors allow adding up to three attribute accessors in BD of the method. 

Contrary to GOOP4, where only single accessor of the treated class can be used, this 

tool allows using accessors of superclasses. 

 Other controls do not differ from corresponding GOOP4 controls. 

 

Note: 

Field Method Type has higher priority than Accessors. If Method Type is set to Read or 

Write but list Accessors is empty, class own accessor is used for i-Classes and GOOP4 

classes. 

 



 15 

4.4 Consistency control 

 Each i-Class class inheriting from ancestor i-Class must call one constructor and one 

destructor belonging to closest in the class hierarchy i-Class. 

 Each GOOP4 directly inheriting from i-Class must call one i-Class constructor per 

class constructor BD and one i-Class destructor in the destructor BD. 

Consistency can be controlled with AZM Consistency tool. 

Simple cases of inconsistency can be repaired with the same tool. More complicated cases 

must be fixed manually. 

 

4.4.1 Using consistency tool 

 
1. Select menu Tools > AZ-MultiInheritance  > AZM Consistency tool… . 

2. Use opened GUI to select project and target. 

 

 

 

 

Figure 5 First GUI of Consistency tool 

 

 

3. Click Investigate. 

4. List of inconsistencies is shown. Corresponding dialog is described in section 4.4.2. 

5. Select inconsistency and click Repair. 

 

4.4.2 Investigation results GUI 

 

Inconsistency list is shown in Figure 6. 

 



 16 

 
 
Figure 6 Example of investigation results 

 

 First hierarchical level lists inconsistency-containing classes. 

 First hierarchical level lists inconsistency-containing methods. 

 The third level lists inconsistencies. 

 
Column Inconsistency can have following values: 

 
Inconsistency Explanation Expected action 

Class has no constructor Class constructor is missing. GOOP4 class can be repaired only 

manually while i-Class can be 

repaired automatically. The newly 

created i-Class constructor should 

be attended and further developed 

manually 

Class has no destructor Class destructor is missing. GOOP4 class can be repaired only 

manually while i-Class can be 

repaired automatically. The newly 

created i-Class destructor should be 

attended and further developed 
manually 

No parent constructor Constructor or accessor does not 

call i-Class accessor with option 

Create. 

Can be repaired automatically. 

No parent destructor Destructor or accessor does not call 

i-Class accessor with option 

Cleanup. 

Can be repaired automatically. 



 17 

Parent has no constructor Parent i-Class constructor is 

missing. 

Can be repaired automatically 

selecting corresponding problem 

presented for the parent i-Class in 

the same GUI. 

Parent has no destructor Parent i-Class destructor 

constructor is missing. 

Can be repaired automatically 

selecting corresponding problem 

presented for the parent i-Class in 

the same GUI. 

 



 18 

 

5 Using i-Classes 

5.1 Specificity of i-Class code 

5.1.1 Order of parent constructors and destructors 

 

Calls of parent i-Class constructor and destructor are similar to corresponding calls of 

GOOP4 class members: 

 BD of child class constructor must call parent constructor. 

 BD of child class destructor must call parent destructor. 

I.e., constructor of any class inheriting from i-Class must call constructor of the parent class 

 

AZM toolkit adds parent i-Class constructors to child class constructor and parent i-Class 

destructor to child class destructor. This is true for both GOOP4 and i-Class child classes. 

 

If class inherits from an Interface while the Interface inherits from an i-Class, calls to 

constructor and destructor of the ancestor i-Class are added to child class BD-s. I.e., presence 

of the Interface “between” the child and the ancestor is ignored. 

 

5.1.2 Order of parent constructors and destructors 

 

If class inherits from multiple i-Classes, order of calls for the parent constructors/destructors 

is not established by AZM toolkit. If the order is important for particular application, it has to 

be established manually. 

 

Calls of parent of i-Class constructors must be placed after utility 

[child_class_name]_New.vi. 

 

5.1.3 Repeated calls of constructor and destructor 

 

Multiple inheritance allows creation of sophisticated class hierarchy. A common case is a 

class inheriting from an ancestor i-Class “twice or more” through different direct parents, see 

Figure 7. Repeated calls of i-Class constructor/destructor have no effect. 



 19 

 

Figure 7 Example a class (CommonChild) inheriting from same ancestor (Root) two times. 

 

I.e., programmers should not worry about behavior of constructors/destructors in complicated 

hierarchies. 

 

 



 20 

 

6 About and Contacts 

 

 

 

Figure 8 About 

 

 

6.1 License Agreement 

 

1 Acknowledgement 

 

CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING 

THIS SOFTWARE. BY USING THIS FREEWARE VERSION, YOU ACKNOWLEDGE 

THAT YOU HAVE READ THIS LIMITED WARRANTY, UNDERSTAND IT, AND 

AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE 

THAT UNLESS YOU HAVE A DIFFERENT LICENSE AGREEMENT SIGNED BY 

ANDREI ZAGORODNI YOUR USE OF THIS SOFTWARE INDICATES YOUR 

ACCEPTANCE OF THIS LICENSE AGREEMENT AND WARRANTY. IF YOU DO NOT 

AGREE TO THE TERMS OF THIS AGREEMENT, DELETE THE SOFTWARE FROM 

ALL STORAGE MEDIA. 

 



 21 

2 License 

 

This Freeware License Agreement (the "Agreement") is a legal agreement between you 

("Licensee"), the end-user, and developer of AZ Multi-inheritance Toolkit Andrei Zagorodni 

("Developer") for the use of this software product ("Software"). Commercial as well as non-

commercial use is allowed. By using this Software or storing this program or parts of it on a 

computer hard drive (or other media), you agree to be bound by the terms of this Agreement. 

Provided that you verify that you are handling the original freeware version you are hereby 

licensed to make as many copies of the freeware version of this Software and documentation. 

You can alter this Software in any way but Developer does not carry any responsibility for 

consequences. 

If you alter and/or further develop this Software, documentation (including "help" and 

"about") must include reference to original Software, name of its Developer and his contacts.  

 

3 Limited Warranty and Disclaimer of Warranty 

 

The AZ Multi-inheritance Toolkit EXPRESSLY DISCLAIMS ANY WARRANTY FOR 

THE SOFTWARE. THIS SOFTWARE AND THE ACCOMPANYING FILES ARE 

PROVIDED "AS IS" AND WITHOUT WARRANTIES AS TO PERFORMANCE OF 

MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER EXPRESSED OR 

IMPLIED, OR NONINFRINGEMENT. THIS SOFTWARE IS NOT FAULT TOLERANT 

AND SHOULD NOT BE USED IN ANY ENVIRONMENT WHICH REQUIRES THIS. NO 

LIABILITY FOR DAMAGES. In no event shall AZ Multi-inheritance Toolkit or its suppliers 

be liable for any consequential, incidental or indirect damages whatsoever (including, without 

limitation, damages for loss of business profits, business interruption, loss of business 

information, or any other pecuniary loss) resulting of the use of or inability to use this 

SOFTWARE EVEN IF the Software HAS BEEN ADVISED OF THE POSSIBILITY OF 

SUCH DAMAGES. The entire risk resulting from the use or performance of the SOFTWARE 

remains with you.  

 

4 Copyright 

 

Copyright © by Andrei Zagorodni.  

 

6.2 Contacts 

 

Andrei Zagorodni 

andrei.zagorodni@novatorsolutions.se 

Please write AZI or AZ Multi-inheritances in the subject line. 

 



 22 

6.3 Support and communications 

 

I shall appreciate feedback about bugs and bottlenecks identified in this SW. 

I promise to read your emails and reply within a reasonable time. However, the project is 

developed in my evenings and weekends. Thus the "reasonable time" will depend solely on my 

workload. 

You are free to modify the code of the software. However, I do not promise to support the 

modified code. 

Andrei Zagorodni 

 

 


	1 Introduction
	1.1 Conventions
	1.1.1 Lexicon, shortenings, and abbreviators
	1.1.2 Font conventions

	1.2 Versions
	1.2.1 Version 0.0.0-pre-alpha
	1.2.2 Version 1.0.0-alpha
	1.2.3 Version 1.1.0-beta


	2 AZ Multi-inheritance Background Ideas
	2.1 Solutions
	2.2 Features
	2.3 Limitations

	3 System Requirements and Installation
	3.1 Requirements
	3.2 Installation
	3.2.1 File location
	3.2.2 Recompiling


	4 Primary Functions of AZ Multi-inheritance toolkit
	4.1 Creating i-Class
	4.1.1 Creating new i-Class
	4.1.2 Converting Interface to i-Class
	4.1.3 Creating i-Class withing LVLIB

	4.2 Setting i-Class as parent class
	4.2.1 Selecting parent

	4.3 Creating new method
	4.4 Consistency control
	4.4.1 Using consistency tool
	4.4.2 Investigation results GUI


	5 Using i-Classes
	5.1 Specificity of i-Class code
	5.1.1 Order of parent constructors and destructors
	5.1.2 Order of parent constructors and destructors
	5.1.3 Repeated calls of constructor and destructor


	6 About and Contacts
	6.1 License Agreement
	6.2 Contacts
	6.3 Support and communications


