
From Interfaces to Full-Scale Multiple Inheritance

Interfaces introduced new dimension in LabVIEW OOP architectures. Full-scale multiple inheritance could 
offer even more possibilities. The presentation describes solution and toolkit for implementing multiple 
parent classes and class branches. The basic idea is new thus feedback and brainstorming following the 
presentation would contribute to further concept development.

Andrei Zagorodni
Stockholm



Andrei Zagorodni

• CLA, PhD

• Works with LabVIEW from 1994 or 1995

• Works only with LabVIEW from 2009
Main area or interests:

• SW architecture



Spectral Data Analysis (SDA)

• Wideband Recorders

• Multichannel Receivers

• Customized RF/SDR Solutions

Remote Measurement (RM)

• Remote Sensors

• IoT

• Telemetry

Control Automate Test (CAT)

• Control System Development

• Test System Development

• LabVIEW & TestStand 
Consulting

 Products, Services & Turn-Key Solutions provider
 ISO 9001 & ISO 14001 certified
 National Instruments Gold Alliance Partner with RF & Wireless specialty



Content

• Why do we need multiple inheritance?

• Concept of Interface-based classes step-by-step 

• AZM Toolkit

• Non-canonical OOP behavior

• Questions and brainstorming



DAQ

Volt
meter

Digital
I/O

DAQ workstation

Device 5
• Voltage
• Current
• Impedance
• Number of cats in GDevCon presentations

Device 4
• Voltmeter
• Frequency meter

We have 
problem 
here!Device 2

• Digital I/O

Device 1
• Voltmeter

Device 3
USB-6009
• Voltmeter
• Digital I/O



Voltmeter Digital I/O

Solution? Interfaces! Interfaces?
Device

USB PXI

Device 5
• Volt
• Current
• Impedance
• Cats

Device 2
• Digital I/O

Device 1
• Voltmeter

Device 4
• Voltmeter
• Frequency meter

Device 3
• Voltmeter
• Digital I/O



Interfaces

• Class can inherit from many different interfaces

• Even more: interface can have own non-abstract methods; 

i.e., own code

• Unfortunately: interface cannot have attributes

• Indeed, an interface with attributes is a fully-capable class

Can we solve this single limitation?



Voltmeter Digital I/O

Multiple inheritance
Device

USB PXI

Device 5
• Volt
• Current
• Impedance
• Cats

Device 2
• Digital I/O

Device 1
• Voltmeter

Device 4
• Voltmeter
• Frequency meter

Device 3
• Voltmeter
• Digital I/O



Can we supply an Interface with attributes?

• Using available tools

• I.e. using conventional LabVIEW code

• Preferably without calls to dll-s or vi.lib

• Yes, let’s do it



LabVIEW Interface
• Descriptor

• Data type definition
• Method definitions: names + terminal patterns

• Not only
• Code

• Is interface a class?
• No

• What is missing?
• Attributes



Let’s start from FGV (Functional Global Variable)

• One set of values for all instances of the class
• Class attributes

Interface is not interface now but 
a Singleton class

• Good achievement but not good enough
• We need own set of attributes for each instance



We need object attributes

• No! Because:
• The wire ”secretly” carries object data cluster
• Changing attribute value would alter the key

• Map of values
• Type of the key?

• Interface data type would be perfect
• Is it possible?



Indeed: Simple test

size = 2

size = 1



Requirements to the key

• Only two requirements
• Key must be unique for each object
• Key must not change during whole 

lifetime of the object

Can LabVIEW class wire satisfy these 
requirements?

Yes! GOOP classes

GOOP class wire
• Carries only unique refnum
• The refnum is assigned when the object is created and disposed by object destructor



Interface-based class: FGV+Map-based attribute accessor

• Interface is converted 
to fully-capable class

If only GOOP classes inherit 
from such i-Classes



Destructor of GOOP4 class inheriting from i-Class



Inheriting from i-Class

• Is this solution good enough?

Let's call it i-Class



Limitation

• There is no attribute-locking
• Race conditions cannot be prevented but only debugged in the 

same way as with any other FGV.

• Different approaches for accessing attributes are confusing.



Solution?

Data value references (DVR) in both

• GOOP4 classes

• i-Classes



Interface-based class: FGV+Map+DVR-based attribute accessor

• DVR map instead 
of attribute cluster 
map



Same approach in GOOP4 and i-Classes

• Race conditions are prevented with 
In Place Element Structure.

• Same approach for accessing 
attributes.



Toolkit



Add i-Class as parent



Inheriting from i-Class: constructor and destructor

Important:
• i-Class accessor is added in 

constructor and destructor 
of the class
• Corresponding element of 

the i-Class map has the 
same lifetime as object of 
the GOOP class 



What to do? Interface was a parent before conversion to i-Class



Consistency tool



Limitations
• Conventional class can inherit from “main” parent (GOOP-class) and 

secondary parents (i-Classes). 
• There is no way to convert main to secondary and vice versa.
• GOOP-class can inherit from i-Class, but i-Class cannot inherit from GOOP-class.

• i-Class is always abstract.
• It cannot be instantiated.

• i-Classes can be used only with GOOP4
• Probably they can be used with GOOP3 and G#.
• They can never be used with Native LabVIEW classes.

• Non-canonical OOP behavior.



Canonical OOP behavior

Subclass is superclass with added or overridden members:
• methods,
• attributes. 

Interface 1

GOOP class C

GOOP class P

GOOP class C

Interface 1

Interface 2

i-Class α

GOOP class C

Interface 1

i-Class β

i-Class α

i-Class β

Single limitation: Interface cannot inherit from a class



Non-canonical OOP behavior

But for LabVIEW… i-Class is still an Interface!

GOOP class C

Interface 1

Interface 2

i-Class 1

Interface 2

• It is absolutely legal from 
LabVIEW point of view!



Non-canonical OOP behavior

We solve the problem if we can agree on:
Interface inheriting from i-Class is i-Class 

GOOP class C

i-Class 1

i-Class 2

• It is native LabVIEW class, but... 
there is an analogy 

• We have an excuse



AZInterface.net
andrei.zagorodni@novatorsolutions.se



Questions for brainstorming

• What is forgotten?
• What is wrong?
• What is ok but can be improved?
• Are there better ideas or solutions?



Thank you!

Andrei Zagorodni
Stockholm


